Code: CS2T4

I B.Tech - II Semester - Regular / Supplementary Examinations May 2017

DIGITAL LOGIC DESIGN (COMPUTER SCIENCE \& ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Convert 1101101 to Octal and Hexadecimal Number.
b) Convert 395.18 to binary and hexadecimal numbers.
c) Implement $\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}$ ' using only NOR gates.
d) What is don't care condition? How to represent in K-Map?
e) Simplify the following expression.
$\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}{ }^{\prime}$
f) What is Look Ahead Carry adder?
g) Compare ROM, PAL and PLA.
h) Compare Asynchronous and Synchronous Counters.
i) What is the difference between latch and flip-flop?
j) What are applications of flip-flops?
k) Define decoder and encoder.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Perform Subtraction with the following unsigned decimal numbers by taking 10 's complement of the subtrahend
i) $\quad 20-100$
ii) $1200-250$
iii) 1753-8640
iv) 5250-1321

8 M
b) Represent the following decimal numbers in BCD 13597, 93286 and 99880 . 8 M
3. a) Design a 2-bit Magnitude Comparator. 8 M
b) Simplify the SOP form using a 4 variable K-Map $F(A, B, C, D)=\sum(0,2,4,8)+d(3,5) \quad 8 \mathrm{M}$
4. a) Design a combinational circuit binary to gray code Converter.

8 M
b) Design a half adder circuit.

8 M
5. a) Design a Decade Counter using D-Flip-Flop.

8 M
b) Compare combinational and sequential circuits.
6. Design a PAL circuit using following Boolean Functions $\mathrm{W}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(2,12,13)$ $\mathrm{X}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(7,8,9,10,11,12,13,14,15)$
$\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,2,3,4,5,6,7,8,10,11,15)$
$\mathrm{Z}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,2,8,12,13)$
16 M

